歐幾里得學(xué)術(shù)活動(dòng)是由滑鐵盧大學(xué)(University of Waterloo)數(shù)學(xué)與計(jì)算機(jī)學(xué)院為全球適齡學(xué)生舉辦的高難度數(shù)學(xué)學(xué)術(shù)活動(dòng),同時(shí)也是加拿大中學(xué)階段最具含金量、最被認(rèn)可的學(xué)術(shù)活動(dòng)。歐幾里得數(shù)學(xué)學(xué)術(shù)活動(dòng)難嗎?考試難點(diǎn)究竟在哪里?(附學(xué)術(shù)活動(dòng)輔導(dǎo)課程)
2023年歐幾里得學(xué)術(shù)活動(dòng)安排
適齡學(xué)生人群:
不得超過(guò)高三或12年級(jí),無(wú)下限;高中畢業(yè)無(wú)升讀大學(xué)可參加
考試時(shí)間:
美洲賽區(qū):2023年4月4日
國(guó)際賽區(qū):2023年4月5日
報(bào)名開放日:2022年冬季
報(bào)名截止日:2023年3月10日
考試形式:
考試時(shí)間為150分鐘
共10道大題,總分100分
題型分為簡(jiǎn)答題和全解題兩種
分?jǐn)?shù)根據(jù)答案正確率與答題步驟決定
答案需要字跡清晰、卷面整潔、格式正確
考試難度:
歐賽考查的是學(xué)生的數(shù)學(xué)技能與思維能力
具有高標(biāo)準(zhǔn)的嚴(yán)格性和專業(yè)性
10道大題中的前幾題為高中難度數(shù)學(xué)題
而最后幾題則為高等數(shù)學(xué)難度數(shù)學(xué)題
為什么參加歐幾里得數(shù)學(xué)學(xué)術(shù)活動(dòng)
1. 獎(jiǎng)學(xué)金Scholarships對(duì)于申請(qǐng)加滑鐵盧大學(xué)數(shù)學(xué)學(xué)院的學(xué)生,更容易獲得大學(xué)提供獎(jiǎng)學(xué)金機(jī)會(huì)
2.?大學(xué)錄取Admissions更容易獲得滑鐵盧大學(xué)數(shù)學(xué)學(xué)院以及其他知名大學(xué)的錄取
3.?證書Awards參加學(xué)術(shù)活動(dòng)并獲得排名前25%的參賽者可以獲得Certificates of Distinction的獎(jiǎng)狀
4.?技能Skills參加學(xué)術(shù)活動(dòng)可以讓學(xué)生提升數(shù)學(xué)技能,應(yīng)用知識(shí)解決創(chuàng)新問(wèn)題的能力,在跨主題的數(shù)學(xué)理論中建立聯(lián)系。
其實(shí)歐幾里得數(shù)學(xué)學(xué)術(shù)活動(dòng)的分量并不比AMC弱。這個(gè)學(xué)術(shù)活動(dòng)獲獎(jiǎng)不僅對(duì)于申請(qǐng)滑鐵盧大學(xué)的獎(jiǎng)學(xué)金有幫助,對(duì)于大家申請(qǐng)英美等國(guó)家的大學(xué)也是不錯(cuò)的敲門磚。
翰林考點(diǎn)分布:上海、北京、深圳,比賽形式為線下
提前規(guī)劃學(xué)術(shù)活動(dòng)報(bào)名,報(bào)名事項(xiàng)咨詢請(qǐng)掃碼
【免費(fèi)領(lǐng)取】學(xué)術(shù)活動(dòng)真題+解析,名師專業(yè)解答+課程優(yōu)惠信息不容錯(cuò)過(guò)站組-1-14.png)
班型
3-8人小班,滿3人開班,共40課時(shí)
報(bào)名須知
1、? 適合人群:12年級(jí)及以下年級(jí)學(xué)生。
2、 ?滾動(dòng)開班,歡迎一起組班
3、? Euclid培訓(xùn)班為3-8人小班,滿3人開班。
課程大綱
| Main?Topics | Selected?Essential?Details?(Materials?with?*?are?aimed?for?the?potential?last?Problems) | |
| Number?Theory | Prime?factorization | Number?of?factors,?Sum/Product?of?factors |
| LCM?and?GCD,?*Euclidean?Algorithm?and?Bézout's?Theorem | ||
| Congruence?and?Modular?Algebra | Principles?of?Modular?Calculations | |
| *Euler’s?Theorem/Fermat's?Little?Theorem | ||
| *Chinese?Remainder?Theorem(CRT) | ||
| Digits?and?Base-n?Representation | Mutual?Conversion?between?different?bases | |
| Diphantine?Equations | Estimation?and?Molular?Method | |
| Algebra | Sequences | Arithemetic?and?Geometric?Sequences |
| Periodic?Sequences,?*Recursive?Sequences?and?Characteristic?Equation?Method | ||
| *Conjecture?and?Mathematical?Induction?Proof | ||
| Functions?and?Equations | Elementary?Functions?(Linear,?Quadratic,?Exponential,?Logarithmic,?Trigonometric)?and?their?properties | |
| Functional?Equations | ||
| *Gaussian/Floor?function | ||
| Inequalities?and?Extreme?Value?Problems | Simple?Polynomial?Inequalities | |
| AM-GM?Inequality,?*Cauchy?inequality | ||
| Polynomials | Division?Algorithm?of?Polynomials?and?the?Remainder's?Theorem | |
| Fundamental?Theorem?of?Algebra?(Polynomial?Factorization)?and?Vieta's?Theorem | ||
| The?Rational?Root?Theorem | ||
| Geometry | Triangles?and?Polygons | The?Law?of?Sines,?The?Law?of?Cosines |
| Area?Method?and?Heron's?formula | ||
| *Menelaus's?theorem,?Ceva's?theorem,?Stewart?Theorem | ||
| Centers?of?triangle | ||
| Circles | Chords,?Arcs,?Tangents,?Inscribed?and?Central?accepted?angles | |
| Cyclic?Quadrilateral | ||
| Power?of?a?Point?Theorem,?*Ptolemy's?theorem | ||
| Basic?Coordinate?Geometry | Coordinate?System?and?Equations?of?lines,?Circles | |
| Basic?Solid?Geometry | Lines?in?space,?Planes;?Rectangular?Box,?Pyramids,?Prisms,?Sphere?and?Cones,Frustums | |
| Combinatorics | Basic?Counting?Principle | Sum?Rules?and?Product?Rules |
| Permutations?and?Combinations | Combinatorics?numbers?and?*Combinatorics?identities | |
| Grouping?Theorems,?Boards?Method?and?the?Problem?of?Balls?into?Boxes | ||
| Logic?reasoning | *Pigeonhole?principle |

? 2025. All Rights Reserved. 滬ICP備2023009024號(hào)-1