AP考試小貼士成熟、勇毅、堅(jiān)定的你們,有沒(méi)有準(zhǔn)備好即將到來(lái)的AP考試呢?
特意為走入考場(chǎng)的你們,
準(zhǔn)備了些考試大餐前的“前菜”,敬請(qǐng)品嘗~物品攜帶身份證準(zhǔn)考證
考生手冊(cè)(student pack)
HB/2號(hào)鉛筆與橡皮——作答選擇題
黑色/藍(lán)色簽字筆——自由問(wèn)答題
計(jì)算器(微積分、化學(xué)、物理、統(tǒng)計(jì)等科目)?禁止攜帶移動(dòng)設(shè)備、筆記本電腦、平板電腦;食品、飲料、香煙等;
各類(lèi)參考資料(即使開(kāi)卷也沒(méi)時(shí)間查找);
涂改液、熒光筆、自動(dòng)鉛筆
(劃重點(diǎn):自動(dòng)鉛筆)。一定要提前注意考試時(shí)間安排,千萬(wàn)不要遲到;請(qǐng)切記不要使用自動(dòng)鉛筆,多帶幾只鉛筆以備不時(shí)之需;
填寫(xiě)信息時(shí)請(qǐng)務(wù)必仔細(xì)核對(duì),確保與網(wǎng)絡(luò)注冊(cè)信息一致。南加州老師結(jié)合考綱,
傾情提示AP微積分BC重點(diǎn),
干貨滿(mǎn)滿(mǎn)請(qǐng)大家收好~Calculus AB/BC復(fù)習(xí)和做題提示
1.1A(a): Express limits symbolically using correct notation.
1.1A(b): Interpret limits expressed symbolically.
提示:?jiǎn)蝹?cè)極限(limit),極限的存在性。
1.1B: Estimate limits of functions.
1.1C: Determine limits of functions.
提示:極限四則運(yùn)算法則。0/0,∞/∞,0?∞均為不定式(indeterminate forms),需要用L’H?pital法則求解;1∞,∞0,00亦為不定式,可通過(guò)求對(duì)數(shù)化為0/0(或∞/∞)不定式。
1.1D: Deduce and interpret behavior of functions using limits.
提示:漸近線(xiàn)(asymptotes)的意義。有理分式(rational functions),其vertical asymptote取決于分母=0的點(diǎn),horizontal asymptote取決于分子分母最高次次數(shù)。
1.2A: Analyze functions for intervals of continuity or points of discontinuity.
提示:在某處連續(xù)(continuous)的定義為:該點(diǎn)極限等于該點(diǎn)函數(shù)值。
1.2B:?Determine the applicability of important calculus theorems using continuity.
提示:閉區(qū)間上連續(xù)函數(shù)有介值定理(Intermediate Value Theorem)和極值定理(Extreme Value Theorem)。
2.1A: Identify the derivative of a function as the limit of a difference quotient.
2.1B: Estimate derivatives.
提示:直接用定義進(jìn)行數(shù)值估計(jì)。
2.1C: Calculate derivatives.
提示:記住基本函數(shù)的微分公式,微分的加減乘除法法則(特別是乘法法則),復(fù)合函數(shù)的鏈?zhǔn)椒▌t(chain rule)。
2.1D: Determine higher order derivatives.
BC級(jí)別:方程定義的隱函數(shù)(implicit function)兩邊取對(duì)x的微分,把y看作x的函數(shù),得到關(guān)于dy/dx的一次方程,然后變形即可用x,y表達(dá)dy/dx;二階微分也是把dy/dx表達(dá)式中y看作x的函數(shù)。
參數(shù)方程(parametric equations)定義的函數(shù)(參數(shù)為t),dy/dx=(dy/dt)/(dx/dt);二階微分再把dy/dx看成t的函數(shù)做類(lèi)似操作。
2.2A: Use derivatives to analyze properties of a function.
提示:一節(jié)微分看增減,二階微分看凹凸。一階微分=0為駐點(diǎn)(stationary point/critical point)可能是極大(local/relative maximum)、極?。╨ocal/relative minimum)或二者皆非,是哪一種看前后一階微分值變不變號(hào);拐點(diǎn)(inflection point)看二節(jié)微分變不變號(hào)。
2.2B: Recognize the connection between differentiability and continuity.
提示:可微(differentiable)必連續(xù),反之不必。
2.3A: Interpret the meaning of a derivative within a problem.
2.3B: Solve problems involving the slope of a tangent line.
提示:切線(xiàn)(tangent)斜率=該點(diǎn)微分值;法線(xiàn)(normal)與切線(xiàn)垂直。
2.3C: Solve problems involving related rates, optimization, rectilinear motion, and planar motion (BC).
提示:注意速度(velocity)是矢量,分量分別算;速率(speed)是速度矢量的大小。
2.3D: Solve problems involving rates of change in applied contexts.
2.3E: Verify solutions to differential equations.
2.3F: Estimate solutions to differential equations.
提示:1)給定一個(gè)一階微分方程(differential equation of first order),則每一個(gè)點(diǎn)(x,y)決定該點(diǎn)的微分值即函數(shù)斜率,所有點(diǎn)的斜率構(gòu)成斜率場(chǎng)(slope field),將各點(diǎn)斜率連成一條曲線(xiàn),則為滿(mǎn)足方程的一個(gè)解。
2)Euler法(BC級(jí)別)為最簡(jiǎn)單的數(shù)值求解一階微分方程的方法,設(shè)定一個(gè)步長(zhǎng)Δx,由一個(gè)初始點(diǎn)開(kāi)始,用每一步的微分值估計(jì)下一步的y的值。
2.4A: Apply the Mean Value Theorem to describe the behavior of a function over an interval.
估計(jì)一個(gè)小的Δx范圍中某點(diǎn)的微分值,可用Lagrange中值定理(Mean Value Theorem)。另外中值定理(Cauchy形式)也是L’H?pital法則的理論基礎(chǔ)。
3.1A: Recognize antiderivatives of basic functions.
提示:基本函數(shù)的微分公式反推一些基本的原函數(shù)(antiderivative)。
3.1A2: Differentiation rules provide the foundation for finding antiderivatives.
提示:求原函數(shù)的運(yùn)算:
1) 加減法和數(shù)乘。
2) 對(duì)于兩函數(shù)相乘的積分,可以先觀察是否其中一個(gè)函數(shù)是另一個(gè)復(fù)合函數(shù)中間變量的微分,如果能就用換元法(changing variables);否則,可以嘗試用分部積分法(integration by parts)(BC級(jí)別):主要適用類(lèi)型包括xn?sin(x), xn?cos(x), xn?ex, xp?lnx, xp?arctan(x)等。
3) 根式下a2±x2型,x2-a2的積分,可用三角換元(如a2-x2,可做代換x=a?cos(x))。
4)對(duì)于有理分式,可以用待定系數(shù)法(method of undetermined coefficients)先化成簡(jiǎn)單的部分分式(partial fractions),然后對(duì)每個(gè)部分分式求積。
3.2A(a): Interpret the definite integral as the limit of a Riemann sum.
3.2A(b): Express the limit of a Riemann sum in integral notation.
提示:Riemann可積(integrable)函數(shù),其Riemann和(sum)的極限與劃分和取點(diǎn)的方式無(wú)關(guān)。
3.2B: Approximate a definite integral.
提示:積分的數(shù)值方法,包括左、右矩形法(left/right rectangle method),梯形法(trapezoid method)。比較幾種方法的近似值與精確值的關(guān)系可通過(guò)畫(huà)圖看出。
3.2C: Calculate a definite integral using areas and properties of definite integrals.
3.2D: (BC) Evaluate an improper integral or show that an improper integral diverges.
提示:反常積分(improper integral)看成上/下極限趨近于無(wú)窮或某值時(shí)積分的極限??邕^(guò)一個(gè)反常奇點(diǎn)積分,則兩邊要分開(kāi)求再加和。
3.3A: Analyze functions defined by an integral.
提示:基本公式:Newton-Leibniz公式,聯(lián)系函數(shù)與原函數(shù)的關(guān)系。變上/下限x的積分看成x的函數(shù),求微分即為被積函數(shù)在該點(diǎn)的值。如果上/下限為x的函數(shù),則求微分用鏈?zhǔn)椒▌t。
3.3B(a): Calculate antiderivatives.
3.3B(b): Evaluate definite integrals.
3.4A: Interpret the meaning of a definite integral within a problem.
3.4B: Apply definite integrals to problems involving the average value of a function.
3.4C: Apply definite integrals to problems involving motion.
提示:BC級(jí)別:注意位移(displacement)是速度(velocity)矢量的積分,也是矢量;距離(distance)是速率(speed)的積分。
3.4D: Apply definite integrals to problems involving area, volume, and length of a curve (BC)?.
提示
1) 面積:極坐標(biāo)(BC級(jí)別)定義的曲線(xiàn)圍成的面積公式。對(duì)封閉曲線(xiàn)先取好始末點(diǎn)對(duì)應(yīng)的極角θ的上下界。求兩圖形相交區(qū)域先求交點(diǎn),然后分片求解。
2)旋轉(zhuǎn)體體積:可用截面(cross-section)法,也可用圓柱殼法(shell method),看給定的函數(shù)關(guān)系和繞哪個(gè)軸旋轉(zhuǎn),選取方便的方法。
3.4E: Use the definite integral to solve problems in various contexts.
3.5A: Analyze differential equations to obtain general and specific solutions.
提示:對(duì)于dy/dx=f(x)?g(y)型的微分方程,可將x、y分離變量(separating variables),兩邊積分。指數(shù)增長(zhǎng)/衰減(exponential growth and decay),以及?logistic growth (BC級(jí)別)兩種常見(jiàn)的方程都屬于這一類(lèi)。
3.5B: Interpret, create, and solve differential equations from problems in context.?4
提示:級(jí)數(shù)(series)值定義成部分和當(dāng)項(xiàng)數(shù)n→∞的極限。
4.1A: Determine whether a series converges or diverges.
提示:
1)級(jí)數(shù)收斂(converges)的必要條件是項(xiàng)an→0;
2)幾何級(jí)數(shù)(geometric series),公比(common ratio)為p,當(dāng)|p|<1時(shí)收斂,否則發(fā)散;
3) 正項(xiàng)級(jí)數(shù)收斂的最基本原理:比較判別法(comparison test)。有改進(jìn)版:極限比較判別法(limit comparison test);
4) p-series:1/np型(或?qū)τ趎可求原函數(shù)的正項(xiàng)級(jí)數(shù))可用積分判別法(integral test);
5) 與幾何級(jí)數(shù)進(jìn)行比較,得到比值判別法(ratio test)和根值判別法(root test),可推廣到非正項(xiàng)級(jí)數(shù)(加絕對(duì)值,判斷絕對(duì)收斂)。其中比值判別法比較有用,適用于含an,n!,nn形式的級(jí)數(shù),也是求冪級(jí)數(shù)收斂半徑的基礎(chǔ)(參見(jiàn)4.2C);
6)絕對(duì)收斂(absolutely converges)的級(jí)數(shù)必收斂,反之不一定。收斂但不絕對(duì)收斂的級(jí)數(shù)稱(chēng)為條件收斂(conditionally converges);
7)對(duì)交錯(cuò)級(jí)數(shù)(alternative series),有簡(jiǎn)單的Leibniz判別法:每項(xiàng)的絕對(duì)值單調(diào)下降趨近于0,則交錯(cuò)級(jí)數(shù)收斂。(圖像:在收斂點(diǎn)附近振蕩,且振幅越來(lái)越?。?/p>
4.1B: Determine or estimate the sum of a series.
提示:
1)幾何級(jí)數(shù)可精確求值;
2)對(duì)于滿(mǎn)足Leibniz判別法的交錯(cuò)級(jí)數(shù),根據(jù)圖像,截?cái)嗟降趎項(xiàng)的和,誤差不超過(guò)第n+1項(xiàng)的絕對(duì)值;
3)對(duì)于絕對(duì)收斂的級(jí)數(shù),則調(diào)換任意項(xiàng)的次序,得到的級(jí)數(shù)依然收斂于原值。
4.2A: Construct and use Taylor polynomials.
4.2B: Write a power series representing a given function.
提示:
1)記住在x=a附近函數(shù)的Taylor展開(kāi)公式,它是一個(gè)冪級(jí)數(shù)(power series)。MacLaurin展開(kāi)式為T(mén)aylor在x=0展開(kāi)式的別名;
2)截?cái)嗟降趎項(xiàng),Lagrange余項(xiàng)(remainder)可用來(lái)做誤差的上限的估計(jì)。注意Lagrange余項(xiàng)的形式中f(n)(ξ)中的ξ為a,x之間的某個(gè)值,誤差估計(jì)的時(shí)候要取|f(n)(ξ)|在該區(qū)間內(nèi)的極大值作為上界的估計(jì);
3)熟悉sin(x), cos(x), ex, ln(1+x), (1+x)p的展開(kāi)式;
4)冪級(jí)數(shù)可以進(jìn)行逐項(xiàng)微分和積分(differentiation and integration term-by-term);由此可求得一些不方便直接計(jì)算的函數(shù)的展開(kāi)式(如arctan(x))。也可用于將無(wú)法寫(xiě)成閉形式(closed form)的原函數(shù)(如∫exp(-x2)dx)展開(kāi)成級(jí)數(shù)。
4.2C: Determine the radius and interval of convergence of a power series.
提示:用比值判別法可求得冪級(jí)數(shù)的收斂半徑(convergence radius)。收斂半徑上的點(diǎn)的收斂性要單獨(dú)判定。

? 2025. All Rights Reserved. 滬ICP備2023009024號(hào)-1