Water is the only reaction product, so fuel cells present obvious environmental advantages over other types of cells
The reaction is the same as hydrogen combusting in oxygen, but since the reaction takes place at room temperature without combustion, all the bond energy is converted into electrical energy instead of heat and light
There are no harmful oxides of nitrogen produced, which are usually formed in high temperature combustion reactions where air is present
Fuel cells have been used on space craft, where the product can be used as drinking water for astronauts
Risks and problems
Hydrogen is a highly flammable gas and the production and storage of hydrogen carries safety hazards
Very thick walled cylinders and pipes are needed to store hydrogen which has economic impacts
The production of hydrogen is a by-product of the crude oil industry, which means it relies on a?non-renewable, finite resource
Until a cheap way is found to make hydrogen, its widespread use in fuel cells will be limited
Hydrogen has high energy density, that is, the amount of energy contained in 1g of the fuel is high compared to other fuels, but because it is a gas, its energy density per unit volume is low which means larger containers are needed compared to liquid fuels
Exam Tip
One difference between fuel cells and other cells is that the cell operates continuously as long as there is a supply of hydrogen and oxygen; the energy is not stored in the cell.