在线观看国产免费视频-国产午夜av-长河落日-xxx日韩-99九九久久-对白超刺激精彩粗话av-狠狠综合网-亚洲视频成人-91刺激-精品国产黄色-少妇人妻邻居-欧美性粗暴-亚洲少妇中文字幕-国产精品一色哟哟哟-黄色美女免费网站-国产网红主播精品av-日韩欧美在线一区二区三区-欧美高清日韩-国产亚洲精品久久久久久久-国产精品--色哟哟
翰林提供學(xué)術(shù)活動(dòng)、國(guó)際課程、科研項(xiàng)目一站式留學(xué)背景提升服務(wù)!
400 888 0080
首頁(yè)
國(guó)際少培課程
美國(guó)AMC8輔導(dǎo)課程
美國(guó)AMC8數(shù)學(xué)競(jìng)賽
校內(nèi)同步培優(yōu)課程
Math Explorer課程
青少年國(guó)際競(jìng)賽匯總
國(guó)際課程
A-Level課程輔導(dǎo)
IB課程輔導(dǎo)
IB-GPA雙師護(hù)航計(jì)劃
AP課程輔導(dǎo)
IGCSE課程輔導(dǎo)
美高課程輔導(dǎo)
美高學(xué)分項(xiàng)目
國(guó)際競(jìng)賽
競(jìng)賽真題資料
理科國(guó)際競(jìng)賽
商科國(guó)際競(jìng)賽
STEM科創(chuàng)競(jìng)賽
文社科國(guó)際競(jìng)賽
丘成桐中學(xué)生科學(xué)獎(jiǎng)
暑期大學(xué)先修課
標(biāo)化考試
牛劍G5筆試輔導(dǎo)
美國(guó)SAT考試
托福TOEFL考試
雅思IELTS考試
TARA考試
美國(guó)SSAT考試
小托福TOEFL JUNIOR?考試
熱門(mén)資訊
學(xué)校動(dòng)態(tài)
賽事動(dòng)態(tài)
課程動(dòng)態(tài)
關(guān)于我們
學(xué)員獎(jiǎng)項(xiàng)
2024-2025年度獎(jiǎng)項(xiàng)
2022-2023年度獎(jiǎng)項(xiàng)
2020-2021年度獎(jiǎng)項(xiàng)
翰林導(dǎo)師
加入我們
商務(wù)合作
Home
»
國(guó)際課程
»
IB課程
»
Details
IB DP Maths: AI HL復(fù)習(xí)筆記4.6.2 Unbiased Estimates
Category:
IB課程
,
教材筆記
,
福利干貨
Date: 2022年7月21日 下午4:36
Unbiased Estimates
What is an unbiased estimator of a population parameter?
An?
estimator
?is a?
random variable
?that is used to?
estimate a population parameter
An?
estimate
?is the value produced by the estimator when a sample is used
An estimator is called unbiased if its expected value is equal to the population parameter
An estimate from an unbiased estimator is called an?
unbiased estimate
This means that the?
mean
?of the?
unbiased estimates
?will get?
closer
?to the?
population parameter
?as?
more samples
?are taken
The?
sample mean
?is an?
unbiased estimate
?for the?
population mean
The?
sample variance
?is?
not an unbiased estimate
?for the?
population variance
On average the sample variance will?
underestimate
?the population variance
As the?
sample size increases
?the sample variance gets?
closer to the unbiased
?
estimate
What are the formulae for unbiased estimates of the mean and variance of a population?
A sample of?
n?
data values (
x
1
, x
2
, ...?
etc) can be used to find unbiased estimates for the mean and variance of the population
Is?
s
n
-1
?an unbiased estimate for the standard deviation?
Unfortunately?
s
n
-1?
is not an unbiased estimate for the standard deviation of the population
It is better to work with the unbiased variance rather than standard deviation
There is not a formula for an unbiased estimate for the standard deviation that works for all populations
Therefore you will not be asked to find one in your exam
How do I show the sample mean is an unbiased estimate for the population mean?
You?
do not need to learn this proof
It is simply here to help with your understanding
Suppose the population of X has mean?
μ
?and variance?
σ
2
Take a sample of?
n
?observations
X
1,?
X
2,?
..., X
n
E(
X
i
) = μ
Using the formula for a linear combination of?
n?
independent variables:
Why is there a divisor of?
n
-1 in the unbiased estimate for the variance?
You?
do not need to learn this proof
It is simply here to help with your understanding
Suppose the population of X has mean?
μ
?and variance?
σ
2
Take a sample of?
n
?observations
X
1,?
X
2,?
..., X
n
E(
X
i
) = μ
Var(
X
i
) = σ
2
Using the formula for a linear combination of?
n?
independent variables:
Exam Tip
Worked Example
轉(zhuǎn)載自savemyexams
Previous post: AQA A Level Maths: Pure復(fù)習(xí)筆記2.5.2 Polynomial Division
Next post: IB DP Maths: AI HL復(fù)習(xí)筆記4.7.1 The Binomial Distribution
國(guó)際競(jìng)賽真題資源免費(fèi)領(lǐng)取
美高學(xué)分項(xiàng)目重磅來(lái)襲!立即了解
最新發(fā)布
2025丘獎(jiǎng)亞洲賽區(qū)經(jīng)濟(jì)金融建模總決賽入圍名單
2025丘獎(jiǎng)亞洲賽區(qū)計(jì)算機(jī)總決賽入圍名單
2025丘獎(jiǎng)亞洲賽區(qū)生物總決賽入圍名單
2025丘獎(jiǎng)亞洲賽區(qū)化學(xué)總決賽入圍名單
2025丘獎(jiǎng)亞洲賽區(qū)物理總決賽入圍名單
2025丘獎(jiǎng)亞洲賽區(qū)數(shù)學(xué)總決賽入圍名單
2025丘成桐中學(xué)科學(xué)獎(jiǎng)亞洲賽區(qū)總決賽入圍名單
2025年AMC10和12真題+答案+解析視頻免費(fèi)下載
熱門(mén)標(biāo)簽
AMC
AMC10
AMC8
AP
物理碗
BBO
A-Level
歐幾里得數(shù)學(xué)競(jìng)賽
Physics Bowl
袋鼠數(shù)學(xué)競(jìng)賽
USABO
John Locke
USACO
AMC12
AIME
IB
PhysicsBowl
BPhO
NEC
丘成桐中學(xué)科學(xué)獎(jiǎng)
歐幾里得
UKChO
HiMCM美國(guó)高中數(shù)學(xué)建模競(jìng)賽
SIC
Euclid
? 2025. All Rights Reserved.
滬ICP備2023009024號(hào)-1
國(guó)際競(jìng)賽
了解背提項(xiàng)目
國(guó)際課程
商務(wù)合作
課程試聽(tīng)
Go to top