在线观看国产免费视频-国产午夜av-长河落日-xxx日韩-99九九久久-对白超刺激精彩粗话av-狠狠综合网-亚洲视频成人-91刺激-精品国产黄色-少妇人妻邻居-欧美性粗暴-亚洲少妇中文字幕-国产精品一色哟哟哟-黄色美女免费网站-国产网红主播精品av-日韩欧美在线一区二区三区-欧美高清日韩-国产亚洲精品久久久久久久-国产精品--色哟哟
翰林提供學(xué)術(shù)活動(dòng)、國(guó)際課程、科研項(xiàng)目一站式留學(xué)背景提升服務(wù)!
400 888 0080
首頁(yè)
國(guó)際少培課程
美國(guó)AMC8輔導(dǎo)課程
美國(guó)AMC8數(shù)學(xué)競(jìng)賽
校內(nèi)同步培優(yōu)課程
Math Explorer課程
青少年國(guó)際競(jìng)賽匯總
國(guó)際課程
A-Level課程輔導(dǎo)
IB課程輔導(dǎo)
IB-GPA雙師護(hù)航計(jì)劃
AP課程輔導(dǎo)
IGCSE課程輔導(dǎo)
美高課程輔導(dǎo)
美高學(xué)分項(xiàng)目
國(guó)際競(jìng)賽
競(jìng)賽真題資料
理科國(guó)際競(jìng)賽
商科國(guó)際競(jìng)賽
STEM科創(chuàng)競(jìng)賽
文社科國(guó)際競(jìng)賽
丘成桐中學(xué)生科學(xué)獎(jiǎng)
暑期大學(xué)先修課
標(biāo)化考試
牛劍G5筆試輔導(dǎo)
美國(guó)SAT考試
托福TOEFL考試
雅思IELTS考試
TARA考試
美國(guó)SSAT考試
小托福TOEFL JUNIOR?考試
熱門資訊
學(xué)校動(dòng)態(tài)
賽事動(dòng)態(tài)
課程動(dòng)態(tài)
關(guān)于我們
學(xué)員獎(jiǎng)項(xiàng)
2024-2025年度獎(jiǎng)項(xiàng)
2022-2023年度獎(jiǎng)項(xiàng)
2020-2021年度獎(jiǎng)項(xiàng)
翰林導(dǎo)師
加入我們
商務(wù)合作
Home
»
國(guó)際課程
»
IB課程
»
Details
IB DP Maths: AA HL復(fù)習(xí)筆記3.6.5 Linear Trigonometric Equations
Category:
IB課程
,
教材筆記
,
福利干貨
Date: 2022年7月12日 下午4:03
Trigonometric Equations: sinx = k
How are trigonometric equations solved?
Trigonometric equations can have an infinite number of solutions
For an equation in sin or cos you can add 360° or 2π to each solution to find more solutions
For an equation in tan you can add 180° or π to each solution
When solving a trigonometric equation you will be given a range of values within which you should find all the values
Solving the equation normally and using the inverse function on your calculator or your knowledge of?
exact values
?will give you the?
primary value
The?
secondary values
?can be found with the help of:
The?
unit circle
The?
graphs of trigonometric functions
How are trigonometric equations of the form sin x = k solved?
It is a good idea to sketch the graph of the trigonometric function first
Use the given range of values as the domain for your graph
The intersections of the graph of the function and the line y = k will show you
The location of the solutions
The number of solutions
You will be able to use the symmetry properties of the graph to find all secondary values within the given range of values
The method for finding secondary values are:
For the equation sin x = k?the primary value is x
1
?= sin?
-1
?k
A secondary value is x
2?
= 180° -?sin?
-1
?k
Then all values within the range can be found using x
1
?± 360n and
For the equation tan x = k??the primary value is x = tan?
-1
?k
Exam Tip
If you are using your G
DC
it will only give you the principal value and you need to find all other solutions for the given interval
Sketch out the CAST diagram and the trig graphs on your exam paper to refer back to as many times as you need to
Worked Example
Trigonometric Equations: sin(ax + b) = k
How can I solve equations with transformations of trig functions?
Trigonometric equations in the form sin(
ax + b
) can be solved in more than one way
The easiest method is to consider the transformation of the angle as a substitution
For example let?
u?
=?
ax?
+?
b
Transform the given interval for the solutions in the same way as the angle
For example if the given interval is 0° ≤ x ≤ 360° the new interval will be
(
a?
(0°) +?
b
) ≤?
u ≤?
(
a?
(360°) +?
b
)
Solve the function to find the primary value for?
u
Use either the unit circle or sketch the graph to find all the other solutions in the range for?
u
Undo the substitution to convert all of the solutions back into the corresponding solutions for?
x
Another method would be to sketch the transformation of the function
If you use this method then you will not need to use a substitution for the range of values
Exam Tip
If you transform the interval, remember to convert the found angles back to the final values at the end!
If you are using your GDC it will only give you the principal value and you need to find all other solutions for the given interval
Sketch out the CAST diagram and the trig graphs on your exam paper to refer back to as many times as you need to
Worked Example
轉(zhuǎn)載自savemyexams
Previous post: Edexcel IGCSE Chemistry 復(fù)習(xí)筆記 1.3.1 Atoms: Definitions & Structure
Next post: AQA A Level Physics復(fù)習(xí)筆記7.4.1 Coulomb's Law
國(guó)際競(jìng)賽真題資源免費(fèi)領(lǐng)取
美高學(xué)分項(xiàng)目重磅來(lái)襲!立即了解
最新發(fā)布
2025丘成桐中學(xué)科學(xué)獎(jiǎng)中國(guó)內(nèi)地總決賽入圍名單
2026年哈佛HIEEC經(jīng)濟(jì)學(xué)論文大賽題目公開(kāi)!附HIEEC大賽往屆獲獎(jiǎng)作品!
2026年HIEEC經(jīng)濟(jì)論文大賽比賽安排公布!點(diǎn)擊查看!
2026賽季HIEEC哈佛國(guó)際經(jīng)濟(jì)學(xué)論文大賽題目
重磅!TCR&NWB歷史論文寫作競(jìng)賽,提交規(guī)則最新調(diào)整!
速看!2026 袋鼠數(shù)學(xué)競(jìng)賽報(bào)名開(kāi)啟!低齡娃必沖的數(shù)學(xué)天花板,競(jìng)賽報(bào)名看這篇就夠了!
2025年HiMCM數(shù)模競(jìng)賽題目正式公布!今年提交有什么要求?附歷年優(yōu)秀論文
BrainBee腦科學(xué)活動(dòng)含金量/競(jìng)賽信息/考查內(nèi)容 附翰林BrainBee培訓(xùn)班
熱門標(biāo)簽
AMC
AMC10
AMC8
AP
物理碗
BBO
A-Level
歐幾里得數(shù)學(xué)競(jìng)賽
Physics Bowl
袋鼠數(shù)學(xué)競(jìng)賽
USABO
John Locke
USACO
AMC12
AIME
IB
PhysicsBowl
BPhO
NEC
丘成桐中學(xué)科學(xué)獎(jiǎng)
歐幾里得
UKChO
HiMCM美國(guó)高中數(shù)學(xué)建模競(jìng)賽
SIC
Euclid
? 2025. All Rights Reserved.
滬ICP備2023009024號(hào)-1
國(guó)際競(jìng)賽
了解背提項(xiàng)目
國(guó)際課程
商務(wù)合作
課程試聽(tīng)
Go to top